Online Read Free Novel
  • Home
  • Romance & Love
  • Fantasy
  • Science Fiction
  • Mystery & Detective
  • Thrillers & Crime
  • Actions & Adventure
  • History & Fiction
  • Horror
  • Western
  • Humor

    Hello World

    Page 25
    Prev Next


      Clinton Foundation 42

      Clubcard (Tesco) 26

      Cohen’s Kappa 215n12

      cold cases 172

      Cold War 18

      Colgan, Steyve 155

      Commodore 64 ix

      COMPAS algorithm 63, 64

      ProPublica analysis

      accuracy of scores 65

      false positives 66

      mistakes 65–8

      racial groups 65–6

      secrecy of 69

      CompStat 149

      computational statistics 12

      computer code 8

      computer intelligence 13 see also AI (artificial intelligence)

      computer science 8

      computing power 5

      considered thought 72

      cookies 34

      Cope, David 189, 190–1, 193

      cops on the dots 155–6

      Corelogic 31

      counter-intuition 122

      creativity, human 192–3

      Creemers, Rogier 46

      creepy line 28, 30, 39

      crime 141–73

      algorithmic regulation 173

      boost effect 151, 152

      burglary 150–1

      cops on the dots 155–6

      geographical patterns 142–3

      gun 158

      hotspots 148, 149, 150–1, 155

      HunchLab algorithm 157–8

      New York City subway 147–50

      predictability of 144

      PredPol algorithm 152–7, 158

      proximity of offenders’ homes 144

      recognizable patterns 143–4

      retail 170

      Strategic Subject List 158

      target hardening 154–5 see also facial recognition

      crime data 143–4

      Crimewatch programme 142

      criminals

      buffer zone 144

      distance decay 144

      knowledge of local geographic area 144

      serial offenders 144, 145

      customers

      data profiles 32

      inferred data 32–4

      insurance data 30–1

      shopping habits 28, 29, 31

      supermarket data 26–8

      superstore data 28–31

      cyclists 129

      Daimler 115, 130

      DARPA (US Defence Advanced Research Projects Agency)

      driverless cars 113–16

      investment in 113

      Grand Challenge (2004) 113–14, 117

      course 114

      diversity of vehicles 114

      GPS coordinates 114

      problems 114–15

      top-scoring vehicle 115

      vehicles’ failure to finish 115

      Grand Challenge (2005) 115

      targeting of military vehicles 113–14

      data 25–47

      exchange of 25, 26, 44–5

      dangers of 45

      healthcare 105

      insurance 30–1

      internet browsing history 36–7, 36–8

      internet giants 36

      manipulation and 39–44

      medical records 102–7

      benefits of algorithms 106

      DeepMind 104–5

      disconnected 102–3

      misuse of data 106

      privacy 105–7

      patterns in 79–81, 108

      personal 108

      regulation of

      America 46–7

      Europe 46–7

      global trend 47

      sale of 36–7

      Sesame Credit 45–6, 168

      shopping habits 28, 29, 31

      supermarkets and 26–8

      superstores and 28–31

      data brokers 31–9

      benefits provided by 32

      Cambridge Analytica 39–42

      data profiles 32

      inferred data 32–4, 35

      murky practices of 47

      online adverts 33–5

      rich and detailed datasets 103

      Sesame Credit 45–6

      unregulated 36

      in America 36

      dating algorithms 9

      Davies, Toby 156, 157

      decision trees 56–8

      Deep Blue 5–7, 8

      deep learning 86

      DeepMind

      access to full medical histories 104–5

      consent ignored 105

      outrage 104

      contract with Royal Free NHS Trust 104

      dementia 90–2

      Dewes, Andreas 36–7

      Dhami, Mandeep 75, 76

      diabetic retinopathy 96

      Diaconis, Pesri 124

      diagnostic machines 98–101, 110–11

      differential diagnosis 99

      discrimination 71

      disease

      Alzheimer’s disease 90–1, 92

      diabetic retinopathy 96

      diagnosing 59, 99, 100

      hereditary causes 108

      Hippocrates’s understanding of 80

      Huntington’s disease 110

      motor neurone disease 100

      pre-modern medicine 80 see also breast cancer

      distance decay 144

      DNA (deoxyribonucleic acid) 106, 109

      testing 164–5

      doctors 81

      unique skills of 81–2

      Dodds, Peter 176–7

      doppelgängers 161–3, 164, 169

      Douglas, Neil 162–3

      driver-assistance technology 131

      driverless cars 113–40

      advantages 137

      algorithms and 117

      Bayes’ red ball analogy 123–4

      ALVINN (Autonomous Land Vehicle In a Neural Network) 118–19

      autonomy 129, 130

      full 127, 130, 134, 138

      Bayes’ theorem 121–4

      breaking the rules of the road 128

      bullying by people 129

      cameras and 117–18

      conditions for 129

      cyclists and 129

      dealing with people 128–9

      difficulties of building 117–18, 127–8

      early technology 116–17

      framing of technology 138

      inevitability of errors 140

      measurement 119, 120

      neural networks 117–18

      potential issues 116

      pre-decided go-zones 130

      sci-fi era 116

      simulations 136–7

      speed and direction 117

      support for drivers 139

      trolley problem 125–6

      Uber 135

      Waymo 129–30

      driverless technology 131

      Dubois, Captain 133, 137

      Duggan, Mark 49

      Dunn, Edwina 26

      early warning systems 18

      earthquakes 151–2

      eBureau 31

      Eckert, Svea 36–7

      empathy 81–2

      ensembles 58

      Eppink, Richard 17, 18

      Epstein, Robert 14–15

      equations 8

      Equivant (formerly Northpointe) 69, 217n38

      errors in algorithms 18–19, 61–2, 76, 159–60, 197–9, 201

      false negatives 62, 87, 88

      false positives 62, 66, 87, 88

      Eureka Prometheus Project 117

      expectant mothers 28–9

      expectations 7

      Experiments in Musical Intelligence (EMI) 189–91, 193

      Face ID (Apple) 165–6

      Facebook 2, 9, 36, 40

      filtering 10

      Likes 39–40

      news feeds experiment 42–3

      personality scores 39

      privacy issues 25

      severing ties with data brokers 47

      FaceFirst 170, 171

      FaceNet (Google) 167, 169

      facial recognition

      accuracy 171

      falling 168

      increasing 169

      algorithms 160–3, 165, 201–2

      2D images 166–7

      3D model of face 165–6

    &
    nbsp; Face ID (Apple) 165–6

      FaceFirst 170

      FaceNet (Google) 167, 169

      measurements 163

      MegaFace 168–9

      statistical approach 166–7

      Tencent YouTu Lab 169

      in China 168

      cold cases 172

      David Baril incident 171–2

      differences from DNA testing 164–5

      doppelgängers 161–3, 164, 169

      gambling addicts 169–70

      identical looks 162–3, 164, 165

      misidentification 168

      neural networks 166–7

      NYPD statistics 172

      passport officers 161, 164

      police databases of facial images 168

      resemblance 164, 165

      shoplifters 170

      pros and cons of technology 170–1

      software 160

      trade-off 171–3

      Youssef Zaghba incident 172

      fairness 66–8, 201

      tweaking 70

      fake news 42

      false negatives 62, 87, 88

      false positives 62, 66, 87, 88

      FBI (Federal Bureau of Investigation) 168

      Federal Communications Commission (FCC) 36

      Federal Trade Commission 47

      feedback loops 156–7

      films 180–4

      algorithms for 183

      edits 182–3

      IMDb website 181–2

      investment in 180

      John Carter (film) 180

      novelty and 182

      popularity 183–4

      predicting success 180–1

      Rotten Tomatoes website 181

      study 181–2

      keywords 181–2

      filtering algorithms 9–10

      Financial Times 116

      fingerprinting 145, 171

      Firebird II 116

      Firefox 47

      Foothill 156

      Ford 115, 130

      forecasts, decision trees 57–8

      free technology 44

      Fuchs, Thomas 101

      Galton, Francis 107–8

      gambling addicts 169–70

      GDPR (General Data Protection Regulation) 46

      General Motors 116

      genetic algorithms 191–2

      genetic testing 108, 110

      genome, human 108, 110

      geographical patterns 142–3

      geoprofiling 147

      algorithm 144

      Germany

      facial recognition algorithms 161

      linking of healthcare records 103

      Goldman, William 181, 184

      Google 14–15, 36

      creepy line 28, 30, 39

      data security record 105

      FaceNet algorithm 167, 169

      high-paying executive jobs 35 see also DeepMind

      Google Brain 96

      Google Chrome plugins 36–7

      Google Images 69

      Google Maps 120

      Google Search 8

      Google Translate 38

      GPS 3, 13–14, 114

      potential errors 120

      guardian mode 139

      Guerry, André-Michel 143–4

      gun crime 158

      Hamm, John 99

      Hammond, Philip 115

      Harkness, Timandra 105–6

      Harvard researchers experiment (2013) 88–9

      healthcare

      common goal 111–12

      exhibition (1884) 107

      linking of medical records 102–3

      sparse and disconnected dataset 103

      healthcare data 105

      Hinton, Geoffrey 86

      Hippocrates 80

      Hofstadter, Douglas 189–90, 194

      home cooks 30–1

      homosexuality 22

      hotspots, crime 148, 149, 150–1, 155

      Hugo, Christoph von 124–5

      human characteristics, study of 107

      human genome 108, 110

      human intuition 71–4, 77, 122

      humans

      and algorithms

      opposite skills to 139

      prediction 22, 59–61, 62–5

      struggle between 20–4

      understanding the human mind 6

      domination by machines 5–6

      vs machines 59–61, 62–4

      power of veto 19

      PredPol (PREDictive POLicing) 153–4

      strengths of 139

      weaknesses of 139

      Humby, Clive 26, 27, 28

      Hume, David 184–5

      HunchLab 157–8

      Huntington’s disease 110

      IBM 97–8 see also Deep Blue

      Ibrahim, Rahinah 197–8

      Idaho Department of Health and Welfare

      budget tool 16

      arbitrary numbers 16–17

      bugs and errors 17

      Excel spreadsheet 17

      legally unconstitutional 17

      naive trust 17–18

      random results 17

      cuts to Medicaid assistance 16–17

      Medicaid team 17

      secrecy of software 17

      Illinois prisons 55, 56

      image recognition 11, 84–7, 211n13

      inferred data 32–4, 35

      personality traits 40

      Innocence Project 164

      Instagram 36

      insurance 30–1

      genetic tests for Huntington’s disease 110

      life insurance stipulations 109

      unavailability for obese patients 106

      intelligence tracking prevention 47

      internet browsing history 36–8

      anonymous 36, 37

      de-anonymizing 37–8

      personal identifiers 37–8

      sale of 36–7

      Internet Movie Database (IMDb) 181–2

      intuition see human intuition

      jay-walking 129

      Jemaah Islam 198

      Jemaah Islamiyah 198

      Jennings, Ken 97–8

      Jeopardy (TV show) 97–9

      John Carter (film) 180

      Johnson, Richard 50, 51

      Jones Beach 1

      Jones, Robert 13–14

      judges

      anchoring effect 73

      bail, factors for consideration 73

      decision-making

      consistency in 51

      contradictions in 52–3

      differences in 52

      discretion in 53

      unbiased 77

      discrimination and bias 70–1, 75

      intuition and considered thought 72

      lawyers’ preference over algorithms 76–7

      vs machines 59–61

      offenders’ preference over algorithms 76

      perpetuation of bias 73

      sentencing 53–4, 63

      use of algorithms 63, 64

      Weber’s Law 74–5

      Jukebox 192

      junk algorithms 200

      Just Noticeable Difference 74

      justice 49–78

      algorithms and 54–6

      justification for 77

      appeals process 51

      Brixton riots 49–51

      by country

      Australia 53

      Canada 54

      England 54

      Ireland 54

      Scotland 54

      United States 53, 54

      Wales 54

      discretion of judges 53

      discrimination 70–1

      humans vs machines 59–61, 62–4

      hypothetical cases (UK research) 52–3

      defendants appearing twice 52–3

      differences in judgement 52, 53

      hypothetical cases (US research) 51–2

      differences in judgements 52

      differences in sentencing 52

      inherent injustice 77

      machine bias 65–71

      maximum terms 54

      purpose of 77–8

      re-offending 54, 55

      reasonable doubt 51

      rehabilitation 55

    &nb
    sp; risk-assessment algorithms 56

      sentencing

      consistency in 51

      mitigating factors in 53

      substantial grounds 51

      Kadoodle 15–16

      Kahneman, Daniel 72

      Kanevsky, Dr Jonathan 93, 95

      kangaroos 128

      Kant, Immanuel 185

      Kasparov, Gary 5–7, 202

      Kelly, Frank 87

      Kerner, Winifred 188–9

      Kernighan, Brian x

      Killingbeck 145, 146

      Larson, Steve 188–9

      lasers 119–20

      Leibniz, Gottfried 184

      Leroi, Armand 186, 192–3

      level 0 (driverless technology) 131

      level 1 (driverless technology) 131

      level 2 (driverless technology) 131, 136

      careful attention 134–5

      level 3 (driverless technology) 131

      technical challenge 136

      level 4 (driverless technology) 131

      level 5 (driverless technology) 131

      Li Yingyun 45

      Lickel, Charles 97–8

      LiDAR (Light Detection and Ranging) 119–20

      life insurance 109

      ‘Lockdown’ (52Metro) 177

      logic 8

      logical instructions 8

      London Bridge 172

      London School of Economics (LSE) 129

      Loomis, Eric 217n38

      Los Angeles Police Department 152, 155

      Lucas, Teghan 161–2, 163

      machine-learning algorithms 10–11

      neural networks 85–6

      random forests 58–9

      machines

      art and 194

      bias in 65–71

      diagnostic 98–101, 110–11

      domination of humans 5–6

      vs humans 59–61, 62–4

      paradoxical relationship with 22–3

      recognising images 84–7

      superior judgement of 16

      symbolic dominance over humans 5–6

      Magic Test 200

      magical illusions 18

      mammogram screenings 94, 96

      manipulation 39–44

      micro-manipulation 42–4

      Maple, Jack 147–50

      Marx, Gary 173

      mastectomies 83, 84, 92, 94

      maternity wards, deaths on 81

      mathematical certainty 68

      mathematical objects 8

      McGrayne, Sharon Bertsch 122

      mechanized weaving machines 2

      Medicaid assistance 16–17

      medical conditions, algorithms for 96–7

      medical records 102–7

      benefits of algorithms 106

      DeepMind 104–5

      disconnected 102–3

      misuse of data 106

      privacy 105–7

      medicine 79–112

      in ancient times 80

      cancer diagnoses study 79–80

      complexity of 103–4

      diabetic retinopathy 96

      diagnostic machines 98–101, 110–11

      choosing between individuals and the population 111

      in fifteenth-century China 81

      Hippocrates and 80

      magic and 80

      medical records 102–6

      neural networks 85–6, 95, 96, 219–20n11

      in nineteenth-century Europe 81

      pathology 79, 82–3

      patterns in data 79–81

      predicting dementia 90–2

      scientific base 80 see also Watson (IBM computer)

      Meehl, Paul 21–2

      MegaFace challenge 168–9

     


    Prev Next
Online Read Free Novel Copyright 2016 - 2025